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ABSTRACT: The simulation community and the software engineering community are actively conducting research 
on technology that will make it possible to easily build complex systems by combining existing components. Advances 
in these research areas offer both communities numerous benefits, including reduced development time and the 
ability to explore a wider space of design alternatives by adding and removing components from existing software 
systems. In the simulation community this research falls under the umbrella of composability. In the software 
engineering community it is referred to as component-based software design (CBSD). We show that simulation 
composability and CBSD are fundamentally the same. Both communities have made significant progress addressing 
the syntactic, or software connection, issues of composability, but it has been difficult to guarantee that composed 
components behave meaningfully (described as semantic composability within the simulation community). We 
demonstrate that although the software engineer's perspective on the composability problem is different, it differs 
only in terms of semantics and scale. By focusing on the similarities, we will show where the simulation community 
can gain insight from past and current CBSD research within the software engineering community.  Additionally, we 
will address unique characteristics of simulations, such as the common use of stochastic sampling, time management, 
and event generation, for providing special opportunities for composability. 
 
1. Introduction 
 
Within both the simulation and software engineering 
communities, there has been a flurry of activity in the 
past decade to ease the burden of implementing 
complex software systems.  The software engineering 
community is looking at this problem for the general 
case that includes all software systems, whereby the 
modeling and simulation (M&S) community is focused 
on simulations.  Interestingly, though both groups 
attack this problem from a different perspective, both 
have identified a similar solution framework that 
provides the ability to build a working, meaningful, 
complex software system from a set of components.  In 
the software engineering community the solution 
framework is called component-based software design 

(CBSD)1.  In the M&S community, it is (simulation) 
composability.   
 
Many have theorized about the existence of such a 
solution framework in the general case, both for 
software, and its subset, simulations.  Contrast this 
hypothetical solution with the ancient myth of the 
philosopher’s stone, for which many conducted an 
exuberant, irrational search for an unknown substance 
that would transmute base metals into gold.  While a 
solution for building meaningful, complex software 
systems from components may theoretically exist 
(unlike the philosopher’s stone), the limited 
technological advances to date in achieving this goal 
may suggest that our initial exuberance in both CBSD 
and composability was also somewhat irrational.  We 
believe additional advances in building software from 

                                                           
1 CBSD is also called component-based software 
engineering (CBSE).  In this paper we use CBSD. 
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components will be achieved, though of a more limited 
scale and scope than solving this challenge for the 
general case. 
 
The search for a general composability solution is still 
a noble one.  The ability to build complex software 
systems from a set of components will offer numerous 
benefits to both the software and simulation 
communities.  If one can meet the requirements of a 
complex system by pulling components off the shelf 
and gluing them together with a reasonable level of 
effort, then there exists the potential for a significant 
savings in development time.  Additionally if there are 
several components that meet the same requirement(s), 
then a wider space of design alternatives can be 
implemented and tested, providing greater flexibility to 
the system designers and implementers. 
 
There are characteristics of simulations that can 
provide purchase in the composability problem.  These 
include time management, stochastic sampling, and 
event generation.  These characteristics can be used to 
argue that simulation composability is a unique 
challenge.  However, despite the assertion by some that 
software engineers and simulationists are trying to 
solve a fundamentally different problem, we will show 
that the problem is actually the same.  The technologies 
developed to date by each community have achieved 
strikingly similar results.  It follows that the research 
challenges that lie ahead for both communities are also 
fundamentally the same.  Hence, the simulation 
community should pay close heed to current and future 
research within the software engineering community as 
it provides potential for progress in simulation 
composability. 
 
The remainder of this paper is structured as follows.  In 
sections 2 and 3, we discuss the state of the art in 
building complex systems from components in the 
simulation and software engineering communities 
respectively.  In section 4 we make the case that 
composability and CBSD are more similar than 
different.  In section 5 we show where software 
engineering research and technologies provide 
opportunities that can be applied to simulation 
composability, and where unique characteristics of 
simulations may provide unique solutions for the 
simulation domain.  Finally, we draw some 
conclusions in section 6. 
 

2. Simulation Composability State-of-the-
Art 
 
Composability has been defined as the capability to 
select and assemble simulation components in various 
combinations into valid simulation systems to satisfy 
specific user requirements [1].  Interoperability differs 
from composability because it only requires 
components to be combined in a meaningful way for a 
single instance, contrasted with composability which 
requires the ability to combine and recombine 
components in other ways to meet new objectives 
without requiring substantial integration efforts [1].  
What exactly constitutes a “substantial integration 
effort” is subjective.  Therefore the delineation 
between composability and interoperability is 
admittedly a sliding scale without objective 
boundaries.  In some respects, if strict composability is 
too hard, interoperability might be good enough, 
providing a tolerable balance between simulation 
component reuse and development efforts. 
 
To date, there have been no significant breakthroughs 
in building practical, composable, simulation 
frameworks.  Most of the progress has been achieved 
on the theoretical side of composability, most notably 
complexity results for the component selection 
problem [2][3][4], and a formal theory of 
composability [5][6].  Contrast this lack of progress in 
composability with simulation interoperability, which 
in the last decade has seen a plethora of technologies 
emerge to advance the M&S community.  Most 
notably, the development of Distributed Interactive 
Simulation (DIS) [7], Aggregate Level Simulation 
Protocol (ALSP) [8], and the High Level Architecture 
(HLA) [9] have given simulation developers some 
tools to glue together simulation components into an 
interoperable federation.   
 
These tools do, however, have two significant, related 
shortfalls: the inability to guarantee consistency 
between simulations in the federation, and the inability 
to provide for component reuse in other federations 
without significant source code modifications.   In 
other words, while these tools can provide the means 
for exchanging and maintaining entity state, resolving 
interactions, managing time, and managing data 
distribution, they provide only minimal facilities for 
ensuring the federation is a meaningful simulation.  
This lack of support often results in simulations that 
fail to meet requirements because of a lack of 
consistency caused by fundamental differences in 
underlying models.   
 



Composability theory explains how an executing 
federation can provide imperfect results.  There are two 
types of composability, syntactic and semantic [1].  
Syntactic composability requires compatible 
implementation details for all possible compositions.  
Examples of implementation details include timing 
mechanisms and interface specifications.  Semantic 
composability requires a meaningful, or valid 
composition.  Informally this definition implies that the 
assumptions made by each component in a 
composition remain consistent throughout the 
execution of the simulation.  Both syntactic and 
semantic composability are necessary for simulation 
composability.   
 
Historically, syntactic composability has been 
achievable, especially if components are built to a 
common engineering framework.  Semantic 
composability, on the other hand, has been a much 
more difficult undertaking.  The potential for some 
new technologies to allow researchers to gain 
footholds in solving semantic composability is 
explored further in section 5. 
 
A recent DoD initiative is the Product Line Approach 
within the One Semi-Automated Forces (OneSAF) 
simulation framework.  This framework provides an 
integrated system for planning, generating, and 
managing a simulation composed of components built 
to support the framework [10].  OneSAF is an HLA 
compliant system, so it has all the interoperability tools 
that come with the HLA specification.  Additionally, 
OneSAF provides a host of tools for composing a 
simulation from a set of behaviors, entities, units, and 
environmental models, all architected to conform to the 
OneSAF framework.  However, OneSAF does not 
contain any ability to enforce assumptions and 
dependencies bound to a component as it is reused in a 
different context.  The advantage of the OneSAF 
framework is that the set of models from which to 
construct a simulation have all been engineered to 
work within the framework.  Therefore, as long as 
developers stay within the framework, they should 
have the ability to modify these models to meet new 
requirements, without concern for the pre-existing 
code that provides the glue into the framework.  The 
community awaits final evaluation of the OneSAF 
framework, which will be to observe that the 
integration required by simulation composability 
remains an efficient means to build a meaningful 
simulation.   
 

3. Component-Based Software Design 
 
We begin our discussion on CBSD with two 
definitions for a software component from widely read 
texts.   The first is by Szyperski [11]: 
 

A software component is a unit of composition with 
contextually specified interfaces and explicit 
context dependencies only. A software component 
can be deployed independently and is subject to 
third-party composition.  

 
Contrast this definition with [12]: 
 

A software component is a software element that 
conforms to a component model and can be 
independently deployed and composed without 
modification according to a composition standard.  

 
At face value, these definitions may appear to be very 
different, though upon further inspection they are quite 
similar.  Both definitions stipulate that components are 
independent, and can be composed with other 
components.  The first definition is more specific about 
the interfaces and dependencies, though these 
characteristics are wrapped up within the conformance 
to a component model of the second definition.  
Clearly, the major difference between the definitions is 
that the second calls for composition without 
modification.  If deployed components are not to be 
modified, then there is a major difference between the 
expectations of software engineers and simulationists 
with respect to the ability to modify components and 
still have composition.  We expound on this point in 
section 4. 
 
Since the inception of CBSD techniques in the early 
1990s, the technology has quickly reached a level of 
maturity where its use is accepted across the software 
development arena today.  Three component models 
have clearly risen to the top: Microsoft’s Component 
Object Model Plus (COM+) [13], the Object 
Management Group’s (OMG) Common Object 
Request Broker Architecture (CORBA) [14], and 
Sun’s Enterprise JavaBeans (EJB) [15].2   
 
While each of these models enforces a unique binary 
structure, in an abstract sense they are very similar in 
how they function.  For example, to invoke a 
component service, the client process calls a local 
                                                           
2 COM+ is closely related to ActiveX, OLE, COM, 
DCOM, and MTS.  EJB is closely related to 
JavaBeans.  For simplicity we have generalized the 
related technologies into one component model. 



proxy, or object request broker, which then marshals 
the function parameters and ships them to the 
component.  The component can reside within the 
same process, or in another process on the local 
machine or a remote machine.  Regardless of the 
location of the component, the server where it resides 
will contain a remote proxy for the component, which 
then unmarshals the parameters and passes them to the 
component.  The component then computes, and 
returns results through the proxies back to the calling 
client (which could itself be a component).    
 
All three of these component technologies provide a 
means for components to expose their public 
interfaces, either through reflection, stubs, or a 
combination of both.  Additionally, there is support in 
all three for dynamic invocation and the ability to 
query component features from information provided 
by metadata.  In addition to these common services, 
there are also unique services provided by some 
subsets of the models, such as support for security, 
transactions, events, and serialization. 
 
The aforementioned unique binary structure of these 
technologies is an obvious constraint on the user, and 
also limits the ability to build systems across 
component models.  The technology to allow a 
component to use another component that is 
implemented in another component model is only 
available for certain pairs of component models.  
However, recent work has focused on providing a 
framework that supports interoperability across all 
component models [16].   
 
In general, state of the art software component 
technologies solve syntactic composability challenges.  
They provide the implementation facilities for 
components to communicate and provide services 
amongst one another, but they provide no guarantees 
about the reliability or consistency of the exchanged 
information with respect to the rest of the computing 
environment.  Leaders in the software engineering 
community admitted in 1998 that the current state of 
CBSD was challenged with respect to developing large 
applications, managing multiple versions of 
components, and integrating components developed by 
different people using different component frameworks 
[17].  For these reasons and others, industry survey 
results published in 2002 show that CBSD has not  yet 
become the mainstream, predominant software 
development technology many envisioned it to be [18].   
 
The discovery by component users that often leads to 
frustration is what software engineers call “side-
effects,” or unintended consequences of adding or 

swapping a new component into a system.  One of the 
questions we explore next is whether these side-effects 
are fundamentally the same challenges faced by 
simulation developers who come across issues of 
semantic composability. 
 
4. Closing the Perceived Gap Between 
CBSD and Composability 
 
In their recent monograph on simulation 
composability, Davis and Anderson make the case that 
composing models is more difficult than composing 
general software components [19].  Their argument is 
predicated on the assumptions that models are more 
complex, are developed for particular purposes, and 
depend on context-sensitive assumptions.  They 
believe model (simulation) composition infers a white-
box where the developer can see, and quite possibly 
modify, the internals, and software engineering 
composition implies a black-box component with only 
the interface exposed.   
 
When reviewing the historical progress of software 
engineers and simulationists, this argument seems 
compelling.  However, in this section, we will examine 
this argument in more detail and show that this is not 
an accurate characterization; that indeed, software 
engineering and simulation composability challenges 
are fundamentally the same.  In particular, the 
assumption that software engineers can disregard 
internal states that simulationists must analyze for 
meaning does not clearly hold.  We compare 
composability and CBSD along four dimensions: the 
business case, architectural mismatch, the complexity 
of the composition, and component semantics. 
 
4.1 The Business Case 
 
As we outlined in section 1, the motivations for 
composition are consistent across M&S and software 
engineering.  Both communities desire reuse and a 
wider range of design alternatives.   
 
Throughout the literature, simulationists and software 
engineers also clearly agree on the business case 
challenges of composition.  In both fields, there is an 
outcry for the infrastructure necessary to facilitate the 
motivation to build and use components.  This 
infrastructure includes, in addition to the components 
themselves, repository facilities, meta-data standards, 
and query tools.  The challenge is the large up-front 
investment necessary to jump-start the communities to 
make composition an every-day reality.   
 



Fred Brooks, a pioneer in the field of software 
engineering, believes that, although not a “silver 
bullet”, component-based engineering is the key 
technology for future advances in software 
development [20][21].  However, he eloquently states 
why component reuse isn’t happening in the large.  
Simply put, the cost to reconstruct a component is low, 
and the cost to discover the functionality of an existing 
component is high.   
 
Here is another perspective on the same challenge.  If a 
conceptual component is small and simple, a developer 
will deem it easier to build and integrate it himself 
rather than trying to understand and integrate an 
existing component.  However, if a conceptual 
component is large and complex, then the investment 
associated with componentizing the software for future 
reuse is too high to justify the lack of a short-term 
benefit, and could even cause short-term pain if a 
deadline is missed, notwithstanding the potential 
complexities associated with composing a piece of 
complex software.  These arguments apply equally to 
both the simulation and software engineering fields, 
and hence at a business case and motivation level, 
simulationists and software engineers face the same 
challenges to gain some momentum for composability. 
 
Brooks uses the field of mathematics to provide a good 
example where components have been embraced, and 
this example provides a useful context for 
simulationists [21].  In mathematics, it takes a large 
amount of intellectual effort to write software, so the 
cost to reconstruct a mathematical component is high.  
There is also a rich and standard nomenclature within 
the mathematical field to describe the functionality of 
components, so it doesn’t take long for a developer 
composing a mathematical component to understand 
the functionality and assumptions underlying the 
component.  We believe this successful exemplar from 
a subset of the general software domain provides some 
hints for future successes of simulationists advocating 
composability.  Composability will be most successful 
where it produces a significant reduction in 
development effort and provides formal means to 
describe the functionality of components.  These ideas 
are not new to simulationists.  However, some 
simulationists may be surprised to learn that they are 
not new to software engineers either. 
 
4.2 Architectural Mismatches 
 
A survey of some classic software engineering 
literature on CBSD provides a good starting point for 
providing comparisons between simulation 
composability and CBSD.  In 1995 Garlan, et al. 

explored the problems associated with building a 
useable system from large, monolithic components 
[22].  In addition to challenges of performance and 
code size, they realized a primary complication was 
caused by components that possessed incompatible 
assumptions (about program control, data, 
communications, topology, build process…).  The 
solution required a significant rewrite of much of the 
existing component software to align component 
assumptions and make the pieces work meaningfully 
together.  They coined the term “architectural 
mismatch” to describe how the components did not fit 
together well.  Their recommendations for the way 
forward include the explicit announcement of 
assumptions, using orthogonal subcomponents, 
developing techniques for bridging mismatches, and 
providing a cookbook for software composition rules 
and principles. 
 
In 1996 Sullivan and Knight attacked the premise of 
Garlan that building systems from large scale 
components is hard [23].  They built a system from 
large-scale components  (each on the order of a million  
lines of code) in approximately eight man-days.  
Sullivan and Knight state that they did not experience 
the same challenges because they used components 
that were designed to work together from the start 
(Visio and Access, which both implemented the OLE 
component framework).  Quoting their conclusion, “A 
key lesson is that, if components are to be composable, 
they have to be designed for it.”  This is another 
example where simulationists and software engineers 
are coming to the same conclusion, as evidenced by 
stunningly similar statements to this one that are found 
in highly regarded publications on simulation 
composability (Davis and Anderson [19] and Kasputis 
and Ng [24]).   
 
4.3 Scale Matters 
 
While Sullivan and Knight are correct in asserting that 
building to a common framework is critical to 
composability, we believe it is also important to 
evaluate the complexity of the composition as opposed 
to the complexity of the components themselves.  In 
Sullivan’s system, the main task of the composition 
consisted of maintaining consistency between the 
database representation of a fault-tree in one 
component and the graphical representation in another.  
Even though each component is approximately one 
million lines of code, this composition is relatively 
simple in comparison with the composition complexity 
of many modern simulation federations.  We therefore 
use this work as an example where composition shows 



promise, but additional research of complex 
compositions is required.  
 
The tendency to keep composition relatively simple is 
a distinguishing trend we see in the software 
engineering community.  The classic example where 
components have been widely and successfully used is 
with the construction of graphical user interfaces 
(GUIs).  In these systems, the components are typically 
buttons or other widgets with very constrained 
capabilities.  The dependencies between components 
are obvious to the developer and can be maintained 
without a lot of bookkeeping or conceptual effort.  The 
semantics of the components are so constrained that it 
allows for easy reuse when the widget is used in a 
different context.  For example, the typical meaning 
(semantics) for a button is that it triggers an event 
when it is clicked or released.  There are no underlying 
assumptions or dependencies that are not obvious from 
the context.  There could possibly be added complexity 
such as the color of the button dynamically changing.  
However, the key point here is that there are only so 
many interesting things one can do with a button, and 
hence button components are easy to compose within 
the domain for which they were intended, a GUI.   
 
As Davis pointed out, models are complex, and hence 
very difficult to compose.  We argue that this point is 
not necessarily a truth, but rather an artifact of the way 
simulationists have attacked the composability 
problem.  For instance, there are a multitude of legacy 
monolithic simulations existing in the world today.  
Simulationists tend to treat these simulations as 
components with which to build new simulations.  Any 
attempt to compose these very complex components 
will undoubtedly result in the kind of architectural 
mismatches described by Garlan, mismatches that can 
be described as both syntactic and semantic 
composability challenges. 
 
On the other hand, software engineers have achieved 
successes in CBSD by building smaller components, 
engineering them to a common framework, and then 
composing them within a common domain (GUIs, for 
example, are one well-known domain) where it is 
easier to manage the assumptions and dependencies.  
We believe simulationists should consider these 
successes in software engineering and start to build 
success stories by composing smaller pieces that are 
designed to work together, and then scaling up.  
OneSAF appears to be a good example where this 
methodology can be applied. 
 
Computer simulations are a subset of all computer 
software, and simulation components are a subset of all 

software components.  Hence, it follows that the 
simulation composability problem cannot be any more 
difficult or complex than the general software 
composability problem.  We argue that simulationists 
encounter complex composition challenges because 
they are working on problems with a larger scale.  
However, simulationists do have a unique perspective 
of the challenges associated with trying to compose 
components that have a large number of complex 
dependencies and assumptions.  These are the semantic 
challenges with which software engineers are now 
beginning to come to terms. 
 
4.4 Semantics Matter 
 
As referenced earlier, the argument exists that 
simulationists need to treat components as white boxes 
with a license to see, and even modify if necessary, the 
internals.  And the same argument states that software 
engineers treat components as black boxes, assuming 
the correctness of the internals and caring only about 
the interfaces.  Another way to characterize this 
argument is that software engineers are concerned with 
syntactic composability, and simulationists are focused 
on semantic composability.  In other words, general 
software components are just that, software, without 
meaning outside of the software context.  This is 
another example where the differences in the 
complexity of the composability problem that each 
community has historically attempted to solve has 
influenced our beliefs.   
 
We believe semantic composability is very important 
to software engineers.  Because semantics are defined 
by component internals, software engineers are very 
much in tune with component internals.  Clearly, if 
syntax were all that mattered to software engineers, 
they would not write in their publications “It is hard to 
detect errors when components are used in a different 
context than for what they were originally designed.” 
[25]  Rather, it has historically been the case that the 
semantics of typical software engineering components 
(GUI widgets for example) and the limited domains in 
which the components were used have been simple 
enough that solutions for syntactic composability 
(CBSD) were also solutions for semantic 
composability. 
 
Another perspective on whether CBSD components 
have semantics is one in which we consider GUI 
widgets as models of real world entities.  For example, 
a button widget is a model of any physical button that 
triggers a mechanical or electrical event.  The 
semantics of a button widget are obviously important 
to the engineer employing it.  For example, if button-



widget A were semantically defined to disappear each 
time it was clicked, this would be very important to the 
GUI developer who tried to compose budget-widget A 
with his interface.  If he did not want this button to 
ever disappear, then the composition of this button 
with the other components could result in an interface 
that was not meaningful.   
 
As an aside, and not germane to the central arguments 
in this paper, one could even take this point one step 
further and show that all software is just a model of 
some computation being performed on a mechanical 
Turing Machine.  Hence, all software is a model, and 
software composability is equal to model 
composability.  This conjecture blurs the lines between 
syntactic and semantic composability, since if all 
software is a model, then it all has meaning, and hence 
all syntax is semantics.  Without delving further into 
this topic, we believe that the traditional delineation 
between syntactic and semantic composability, while 
very convenient, does not necessarily have a clearly 
defined boundary. 
 
Software engineers care as much about semantics as 
simulationists.  As the complexity of composition in 
general software components is scaled up, software 
engineers are discovering that semantics matters.  And 
this scaling up is starting to happen, as evidenced by 
this journal quote: “The goal is to replace IDE palettes 
of text fields, data grids, push-buttons, and similar 
GUI controls with palettes that contain business 
objects, services, and functional views.  Developers 
would then select, customize, and assemble these items 
into specialized components such as insurance 
coverage, and script complex business processes such 
as order fulfillment.” [26]  As software engineers 
increase the complexity of their component 
interactions, we believe they will (or probably already 
have) come across the same semantic composability 
challenges already discovered by simulationists.  There 
are technologies and standards being developed today 
outside the simulation community to address this 
challenge.  They are discussed in section 5. 
 
4.5 Convergence in CBSD and Composability 
Research 
 
Simulationists and software engineers working on 
composability have converged upon the same results, 
but from different directions.  Simulationists started by 
trying to compose large, monolithic components.  
Software engineers achieved successes by composing 
small, semantically trivial components. 
 

From different directions, syntactic composability has 
been achieved in both communities.  DIS, ALSP, and 
the HLA provide the glue to tie together simulation 
components, while COM+, EJB, and CORBA provide 
binary compatibility for the interoperability of software 
components.  Clearly, the great unsolved challenge that 
lies ahead for both communities is semantic 
composability, the capability to compose components, 
with the composition resulting in a meaningful, valid 
system. 
 
5. Moving Ahead with Simulation 
Composability 
 
Current simulation interoperability advances have 
benefited from past software engineering research.  
Specifically, the HLA design is heavily influenced by 
the principles of object-oriented analysis and design, to 
include information hiding and hierarchical class 
structures.  Not only has past software engineering 
research impacted heavily on the current state of 
simulation interoperability, but it will have future 
impacts also.  Observing how simulation composability 
and CBSD are fundamentally the same, have 
experienced similar progress, and have some common 
challenges ahead, it follows that the simulation 
community needs to closely monitor the new standards 
and technologies emerging from the software 
engineering community as potential paths for progress. 
 
5.1 Following this Path 
 
We will highlight three software technologies as 
potential avenues for simulation advances in 
composability.  We chose technologies that provide 
potential for the simulationists to document a 
simulation and formally reason over the documentation 
to provide insights about the prospects for 
composability.  This is not intended to be an 
exhaustive list. 
 
5.1.1 Predictable Assembly from Certifiable 
Components (PACC) and Prediction-enabled 
Component Technology (PECT) 
 
Software engineers have discovered that even though 
technologies exist to plug together compiled 
components (CORBA, EJB, COM+), only after 
assembly and testing might it be discovered that these 
components are incompatible.  Their interfaces may 
not be sufficiently descriptive and the behaviors of 
individual components may be unknown.  These 
shortcomings prevent the discovery of the behaviors of 
compositions until after assembly.   



 
PACC is an initiative at the Software Engineering 
Institute to predict and certify the runtime behavior of 
an assembly of components [27].  PECT is an approach 
to achieving the PACC objectives [28].  PECT is an 
extended component model that works by building a 
Reasoning Framework for any runtime property.  The 
Reasoning Framework consists of Property Theory 
(logic for reasoning about the property) and Decision 
Procedure (an automated means of computing 
predicted properties).  The Reasoning Framework must 
explicitly expose any assumptions about the system it 
models.  The component technology then ensures that 
components and assemblies satisfy these assumptions 
through static checking, resulting in a predictable 
assembly behavior.  In addition to this static check,  
each well-formed assembly can be specified with a 
composition language, which is formally mapped to a 
unique model in the reasoning framework, introducing 
more constraints on the components and their 
assemblies. 
 
This technology provides potential opportunities for 
documenting and reasoning about the semantics of 
simulation components and compositions of 
simulations in a formal way.  We believe this formal 
reasoning is exactly the sort of technology needed to 
support simulation semantic composability. 
 
5.1.2 Web Ontology Language (OWL) 
 
The Semantic Web is the vision of Tim Berners-Lee, 
the founder of the World Wide Web.  His vision is to 
“… bring structure to the meaningful content of Web 
pages.” [29]   OWL is an emerging, enabling 
technology for the Semantic Web under the guidance 
of the World Wide Web Consortium [30].  Its power 
lies in the ability to define structured ontologies for 
delivering richer integration and interoperability of 
data among descriptive communities.  In OWL, data is 
described using formal terms including discrete math 
concepts (e.g. cardinality, enumeration, relations, and 
set logic) and class hierarchies.  Ontologies are built 
using OWL to describe the structure and meaning of 
data specific to any domain.  OWL also includes 
formalisms to tie together ontologies, providing 
consistent meaning of information across domains. 
 
OWL is a definite candidate technology for 
documenting simulation components, and work has 
already begun in this endeavor [31].  Using OWL 
formalisms, pre-built ontologies supporting any 
domain for which a model description is needed (to 
include the M&S domain), and tools to reason about 
ontologies, a framework is possible with which to 

support the reasoning about whether simulation 
components are semantically compatible.   
 
5.1.3 Unified Modeling Language (UML) 
and Model Driven Architecture (MDA) 
 
UML is an OMG standard providing a graphical tool 
for modeling the structure, behavior, and management 
of software applications [32].  UML has become very 
widely used in industry for software development and 
documentation tasks.  MDA, also an OMG product, 
provides the means to separate application logic from 
platform technology [33].  Using the MDA, a 
developer builds a Platform Independent Model (PIM) 
in UML, describing the application while abstracting 
any potential platform technology.  Then, using 
standardized mappings and supported by automated 
tools, the PIM can be transformed to a Platform 
Specific Model (PSM), also described in UML.  This 
automated transformation allows for the rapid 
implementation of a PIM to any one of many supported 
technologies, to include CORBA, EJB, and .NET.  The 
MDA also provides facilities for building repositories 
of models, describing data structure, and transmitting 
models. 
 
Previously, simulationists have proposed using the 
OMG’s MDA to support simulation interoperability 
and reuse [34][35][36].  These ideas, if successful, 
would lead to a much more sophisticated and 
automated means of providing HLA-like services to 
simulations built from components.  While useful, 
these approaches don’t attack what we believe to be the 
critical need for the simulation community, some level 
of semantic composability.  However, Ng et al. does 
acknowledge the need for a separate XML-based 
model specification language to support semantic 
composition [35]. 
 
Davis and Anderson embrace documentation as a 
critical supporting element of composability [19].  
They advocate the potential of a high-level graphical 
specification system like UML coupled with a more 
detailed specification system, for example the Discrete 
Event Specification System (DEVS) [37], as a viable 
approach for documentation.  If properly used to 
document component functionality, constraints, and 
assumptions, and given the right tools to query this 
documentation, a more automated approach for 
achieving semantic composability is possible. 
 
5.2 Leveraging the Uniqueness of Simulations 
 
Guaranteeing semantic composability is a very hard 
problem.  The previous section outlined technologies 



that may provide approaches to this problem by 
exposing the internals of components.  However, 
success is not guaranteed, and will probably be 
achieved at a slow pace.  Therefore, we believe 
multiple approaches are in order. 
 
In Section 4.3 we argued that the composability of 
simulation components is fundamentally no more 
difficult than the composability of general software 
components.  However, because simulation 
composability is a subset of software composability, 
focusing on unique solutions for simulation 
composability could potentially provide solutions that 
are not necessarily applicable for all software.  Hence, 
simulation composability could be a less difficult 
problem than software composability.  We are 
investigating properties and characteristics commonly 
found in simulation software, not normally found in all 
software, from which we can gain traction and leverage 
for unique simulation composability solutions. 
 
For example, event-based software is an active area of 
research within the software engineering community 
[38].  However, the software engineer’s perspective in 
event-based software is clearly on event handling.  We 
see significant opportunity in separating out event 
generation in any model we consider for large-scale 
simulations. Event generation in typical simulations 
includes assumptions about phenomena that are 
simulated, and those that are not, and the use of 
stochastics as a substitute for the unknown and/or 
unsimulated phenomena.   
 
Stochastic sampling is another property commonly 
found in simulations.  The presence of stochastics 
implies a relaxed level of strictness about the values 
that can be taken on by a parameter at any given point 
in time.  We want to leverage this relaxation of 
parameter values in the determination of the suitability 
of two components for semantic consistency. 
 
Lastly, simulations typically have some form of time 
management.  Regardless of whether a simulation is 
event-stepped, or time-stepped, the simulation, by the 
very nature of it running on a computer, has a discrete 
flavor to it.  Typically, there are places along the 
discrete time axis where things need to be made 
semantically consistent, and in between these times, 
this condition can be relaxed.  In other words, semantic 
consistency is not a continuum that follows a 
continuous curve along the axis of time.  Once again, 
we want to leverage this identification of critical points 
and relaxation of consistency in determining whether 
components are semantically composable. 
 

6. Conclusion 
 
We have shown that the CBSD and simulation 
composability are more similar than different.  They 
both have the goal of promoting reuse and widening 
design alternatives.  Both are challenged with respect 
to putting together the right business case to get the 
technologies jump-started.   Fundamentally, both 
software engineering and simulation composition are 
predicated on syntactic and semantic composability, 
which means that both the interfaces and the internals 
are necessary to make composition work.  At this point 
in their maturity, both simulation composability and 
CBSD have converged.  They both have made 
significant progress solving technical interoperability 
problems, yet both are challenged ensuring that 
compositions are meaningful and valid. 
 
We believe a two-pronged approach provides the best 
possibility for future advances in simulation 
composability.  First, because composability and 
CBSD share the same challenges, simulationists must 
continue to monitor the progress of software 
engineering research for potential technologies to 
provide further advances in interoperability and 
composability.  Secondly, because simulation 
components have unique characteristics not necessarily 
present in all software components, attempts should be 
made to leverage these properties to make advances 
that might be applicable only within the simulation 
domain. 
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